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In this paper we will present theself-induced approachto decoherence, which does
not require the interaction between the system and the environment: decoherence in
closed quantum systems is possible. This fact has relevant consequences in cosmology,
where the aim is to explain the emergence of classicality in the universe conceived as a
closed (noninteracting) quantum system. In particular, we will show that the self-induced
approach may be used for describing the evolution of a closed quantum universe, whose
classical behavior arises as a result of decoherence.
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1. INTRODUCTION

During the last years, the theory of decoherence has become the new ortho-
doxy in the quantum physicists community. At present, decoherence is studied and
tested in many areas such as atomic physics, quantum optics, condensed matter,
etc. (see references in Paz and Zurek, 2000; Zurek, 2001). Following the initial
proposal of Zeh (1970), the theory was systematized and developed in a great
number of works. According to Zurek (1991, 1994), decoherence is a process re-
sulting from the interaction between a quantum system and its environment; this
process singles out a preferred set of states, usually called “pointer basis,” that
determines which observables will receive definite values. This means that deco-
herence leads to a sort of selection which precludes all except a small subset of the
states in the Hilbert space from behaving in a classical manner. Arbitrary super-
positions are dismissed, and the preferred states become the candidate to classical
states: they correspond to the definite readings of the apparatus pointer in quantum
measurements, as well to the points in the phase space of a classical dynamical
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system.Environment-induced-superselection(einselection) is a consequence of
decoherence.

In this paper we will present a new approach to decoherence, different from the
main stream einselection approach. From this new perspective, which we will call
self-induced approach, decoherence does not require the interaction between the
system and the environment: decoherence in closed quantum systems is possible.
This fact has relevant consequences in cosmology, where the aim is to explain the
emergence of classicality in the universe conceived as a closed (noninteracting)
quantum system. In particular, we will show that the self-induced approach may
be used for describing the evolution of a closed quantum universe, whose classical
behavior arises as a result of decoherence.

2. THE EINSELECTION APPROACH IN COSMOLOGY

According to Zurek, einselected states are distinguished by their stability in
spite of the monitoring environment. In Paz and Zurek’s words (Paz and Zurek,
2000), “the environment distills the classical essence of a quantum system.” This
means that, from the einselection view, the split of the universe into the degrees of
freedom which are of direct interest to the observer (the system) and the remaining
degrees of freedom (the environment) is absolutely essential for decoherence. Such
a split is necessary, not only for explaining quantum measurement, but also for
understanding que quantum origin of the classical world. In fact, the einselection
approach considers the problem of the transition from quantum to classical as the
core of the problem: quantum measurement is conceived as a particular case of the
general phenomenon of the emergence of classicality. In addition, if classicality
only emerges in open quantum systems, it must always be accompanied by other
manifestations of openness, such as dissipation of energy into the environment.
Zurek (2001) even considers that the prejudice which seriously delayed the solution
of the problem of the transition from quantum to classical is itself rooted in the fact
that the role of the openness of a quantum system in the emergence of classicality
was ignored for a very long time.

In summary, decoherence explains the emergence of classicality, but only
open systems can decohere. The question is: What about the universe as a whole?
If, as Zurek himself admits, the universe is, by definition, a closed system, then it
cannot decohere. How to explain, then, the classical behavior of stars, galaxies, and
clusters? Zurek (1994) considers this possible criticism: if the universe as a whole is
a single entity with no “outside” environment, any resolution involving its division
into systems seems unacceptable. Zurek’s answer to this objection is based on his
particular conception about the nature of quantum mechanics: for him, the aim of
the theory is to establish the relationships between formal results and observer’s
perceptions. And perception is an information-processing function carried out by a
physical system, the brain. The brain is conceived as a massive, neural network-like
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computer very strongly coupled to its environment, and the environment plays the
role of a commonly accessible internet-like database, which allows the observer
to make copies of the records concerning the states of the system with no danger
of altering it Zurek (1998). The stability of the correlations between the state of
the observer’s brain and the state of the environment on the one hand, and between
the state of the environment and the state of the observed system on the other, is
responsible for the perception of classicality.

This means that, for the einselection approach, the problem of the transition
from quantum to classical amounts to the question “why we don’t perceive super-
positions?” Zurek (1998). In other words, the task is to explain, not the emergence
of classicality, butour perception of classicality.But this position would hardly
convince the cosmologist, who conceives the universe as a single-closed object
with no other object to interact with. In the cosmological context, the wave func-
tion of the universe describes, not the system of everything except the observers’
brains, but the universe as a whole. Nevertheless, cosmology tries to explain, with
the universal wave function, the evolution of a closed quantum universe where the
classical behavior described by general relativity emerges. If we take Zurek’s posi-
tion seriously, without the assumption of a division of the universe into individual
systems the problem of the emergence of classicality has no solution.

At this point, it could be noted that the einselection approach has been applied
to the cosmological level with interesting results. This is certainly true, but does
not undermine the closed-universe objection. In the works where the einselection
approach is used in cosmology, the general strategy consists in splitting the universe
into some degrees of freedom which represent the “system” of interest, and the
remaining degrees of freedom that are supposed to be nonaccessible and, therefore,
play the role of an internal environment. For instance, in quantum field theory, it
is usual to perform a decomposition on a scalar fieldφ, φ = φS+ φE whereφS

denotes the system field andφE denotes the environment field; when it is known
that the background field follows a simple classical behavior, the scalar field is
decomposed according toφ = φc + φq, where the background fieldφc plays the
role of the system and the fluctuation fieldφq plays the role of the environment
(see Calzettaet al., 2001). This means that, strictly speaking, it is not the universe
what decoheres, but a subsystem of the universe: we perceive a classical universe
because there are unaccessible degrees of freedom that act as an environment.

These considerations allow us to point out the weakest spot of the einselection
program. When this approach is applied to the universe (and, in general, to any
system with internal environment), the space of the observables which will behave
classically is assumed in advance: the distinction between the system’s degrees of
freedom and the environmental degrees of freedom is established in such a way
that the system decoheres in some observables of that space. This means that the
split of the whole must be decided case by case: there is not a general criterion
for discriminating between system and environment. In fact, in the case of the
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decomposition of the scalar fieldφ previously mentioned, different criteria are
used: sometimes the decomposition is performed on the basis of the length, mass,
or momentum scales of the system and the environment, sometimes the system
field is considered as containing the lower modes ofφ and the environment as
containing the higher modes (see Calzettaet al., 2001; Zurek (1998) recognizes
that this lack of a general criterion for deciding where to place the “cut” between
system and environment is a serious difficulty of his proposal: “In particular, one
issue which has been often taken for granted is looming big, as a foundation of the
whole decoherence program. It is the question of what are the “systems” which
play such a crucial role in all the discussions of the emergent classicality. This
issue was raised earlier, but the progress to date has been slow at best.”

As we will see, the self-induced approach to decoherence overcomes these
problems to the extent that it does not require the openness of the system of interest
and its interaction with the environment.

3. THE SELF-INDUCED APPROACH TO DECOHERENCE

This approach relies on the general idea that the interplay between observ-
ables and states is a fundamental element of quantum mechanics (see Laura and
Castagnino, 1998a). The departing point consists in adopting an algebra of observ-
ablesA as the primitive element of the theory: quantum states are represented by
linear functionals overA. In the original formulation of the algebraic formalism,
the algebra of observables is a C∗-algebra. The GNS theorem (Gel’fand–Naimark–
Segal) proves that the traditional Hilbert space formalism is a particular represen-
tation of this algebraic formalism; the algebra of observables is thereby given a
concrete representation as a set of self-adjoint bounded operators on a separable
Hilbert space. Nevertheless, it is well known that the C∗-algebraic framework does
not admit unbounded operators; therefore, it is necessary to move to a less restric-
tive framework in order to accommodate this kind of operators. The self-induced
approach adopts anuclear algebra(Treves, 1967) as the algebra of observables
A: its elements are nuclei or kernels, that is, two variables distributions that can
be though of as generalized matrices (Castagnino and Ordo˜nez, manuscript sub-
mitted for publication). By means of a generalized version of the GNS theorem
(Iguri and Castagnino, 1999) it can be proved that this nuclear formalism has a
representation in a rigged Hilbert space: the appropriate rigging provides a math-
ematical rigorous foundation to unbounded operators (see Belanger and Thomas,
1990). In fact, the nuclear spectral theorem of Gel’fand and Maurin establishes
that, under very general mathematical hypotheses (quite reasonable from a phys-
ical point of view), for every CSCO (complete set of commuting observables) of
essentially self-adjoint unbounded operators, there is a rigged Hilbert space where
such a CSCO can be given a generalized eigenvalue decomposition, meaning that
a continum of generalized eigenvalues and eigenvectors may thereby be associated
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with it. To find the appropriate rigging, the nuclear algebra is used to generate two
additional topologies: one of them corresponds to a nuclear space, which is the
space of generalized observablesVO; the other corresponds to a nuclear space,
which is the space of generalized observablesVO; the other corresponds to the
dual of the spaceVO, and this is the spaceVS of states.

Following (Antoniouet al., 1997; Laura and Castagnino, 1998a,b), we will
symbolize an observable belonging toVO by a round ket|O) and a state belonging
to VS by a round bra (ρ|. The result of the action of the round bra (ρ| on the round
ket |O) is the mean value of the observable|O) in the state (ρ|:

〈O〉ρ = (ρ|O) (1)

If the basis is discrete,〈O〉ρ can be computed as usual, that is, asTr(ρO). But if
the basis is continuous,Tr(ρO) is not well defined; nevertheless, (ρ|O) can always
be rigorously defined since (ρ| is a linear functional belonging toVS acting onto
an operator|O) belonging toVO.

To see how decoherence works from the new approach, let us consider the
simplest case, a quantum system whose Hamiltonian has a continuous spectrum:

H |ω〉 = ω |ω〉 ω ∈ [0,∞) (2)

whereω and |ω〉 are the generalized eigenvalues and eigenvectors ofH respec-
tively. The CSCO of this system is just{H}. A generic observable|O) can be
expressed in terms of the eigenbasis{|ω〉}〈ω′| as

|O) =
∫ ∫

Ô(ω, ω′) |ω〉〈ω′ | dω dω′ =
∫ ∫

Ô(ω;ω′) |ω;ω′)dω dω′ (3)

where|ω;ω′) = |ω〉〈ω| andÔ(ω, ω′) represents the coordinates of the kernel|O).
The Hamiltonian in the eigenbasis{|ω;ω′)} reads

H =
∫
ω |ω〉〈ω | dω =

∫ ∫
ωδ(ω − ω′) |ω;ω′)dω dω′ (4)

Then,ωδ(ω − ω′) must be one ofÔ(ω, ω′), sinceH is one of the observables
belonging toVO. Moreover, all the observables which commute withH and share
the eigenbasis{|ω;ω′)} must have the following from:

|O) =
∫ ∫

O(ω) |ω〉〈ω | dω =
∫ ∫

O(ω)δ(ω − ω′) |ω;ω′)dω dω′ (5)

whereO(ω) supplies the values of the components of|O) in the basis{|ω;ω′)}.
Therefore,O(ω)δ(ω − ω′) must be one of̂O(ω, ω′). But, of course, we need also
observables which do not commute withH and whoseÔ(ω, ω′) are different than
O(ω)δ(ω − ω′); then, with no loss of physical generality we can postulate as a
general case:

Ô(ω, ω′) = O(ω)δ(ω − ω′)+ O(ω, ω′) (6)
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whereO(ω, ω′) is a regular function whose precise mathematical properties are
listed in Castagnino and Laura (2000a).4 Therefore, a generic observable|O) reads
(see van Hove, 1995)

|O) =
∫

O(ω) |ω)dω +
∫ ∫

O(ω, ω′) |ω;ω′) dω dω′ (7)

where|ω) = |ω〉〈ω| and|ω;ω′) = |ω〉〈ω′| are the generalized eigenvectors of the
observable|O). We will call the first term of the r.h.s of Eq. (7)OS (the singular
part of the observable|O)). and the second term of the r.h.s of Eq. (7)OR (the
regular part of the observable|O))

The observables|O) of the form (7) define what we will callvan Hove
space VVH

O ⊂ VO; {|ω), |ω;ω′)} is the basis ofVVH
O . On the other hand, states are

represented by linear functionals belonging to a spaceVVH
S , which is the dual of

VVH
O ; therefore, a generic state (ρ| can be expressed as

(ρ| =
∫
ρ(ω)(ω | dω +

∫ ∫
ρ(ω, ω′) (ω;ω′ | dω dω′ (8)

whereρ(ω, ω′) is a regular function, andρ(ω) andρ(ω, ω′) satisfy the properties
ρ ≥ 0, (ρ | I ) = 1 (whereI ) is the identity operator) and those listed in Castagnino
and Laura (2000a).{(ω|, (ω;ω′|}, the basis ofVVH

S , is the cobasis of{|ω), |ω;ω′)}
defined by the following relations5 :

(ω |ω) = δ(ω − ω′) (ω;ω′′ |ω′;ω′′′) = δ(ω − ω′′)δ(ω′ − ω′′′) (ω |ω′;ω′′) = 0
(9)

Given the expressions (7) and (8) for|O) (ρ| respectively, decoherence fol-
lows in a straightforward way. According to the unitary von Neumann equation,
the evolution of (ρ| is given by

(ρ(t)| =
∫
ρ(ω) (ω | dω +

∫ ∫
ρ(ω, ω′) e−i (ω−ω′)t (ω;ω′ | dω dω′ (10)

Therefore, the mean value of the observable|O) in the state (ρ(t)| reads

〈O〉ρ()t = (ρ(t) |O) =
∫
ρ(ω)O(ω)dω +

∫ ∫
ρ(ω, ω′)e−i (ω−ω′)t O(ω;ω′)dω dω′

(11)
Sinceρ(ω, ω′) and O(ω, ω′) are regular functions (see Laura and Castagnino,
1998a, for details), if we take the limit fort →∞, we can apply the Riemann–
Lebesgue theorem, according to which the second term of the r.h.s. of the last

4 Since any singular kernel can be approximated by a regular one, theO(ω) δ(ω − ω′)+ O(ω, ω′)
are dense on the set of̂O(ω, ω′). Therefore, we do not lose physical generality, in the sense that
O(ω) δ(ω − ω′)+ O(ω, ω′) have all the required physical properties up to any order and, then, they
are experimentally indistinguishable from theÔ(ω, ω′).

5 These are the generalization of the relations between the basis{|i 〉} and the cobasis{〈 j |} in the discrete
case:〈 j | i 〉 = δi j .
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equation vanishes. Therefore,

lim
t→∞〈O〉ρ(t) = lim

t→∞(ρ(t) |O) =
∫
ρ(ω)O(ω) dω (12)

But this integral is equivalent to the mean value of the observableO in a new state
(ρ∗|:

(ρ∗| =
∫
ρ(ω) (ω|dω (13)

where the off-diagonal terms have vanished. Therefore, we obtain the weak limit,

lim
t→∞〈O〉ρ(t) = 〈O〉ρ∗ (14)

The next step is to study the formalism under the Wigner transformation
“symb.” Everything behaves in the usual way for the regular parts of|O) and
(ρ|, since these parts satisfy the hypotheses of papers (Hillaryet al., 1984; Wigner,
1932). The problem consists in defining the Wigner transformation for the singular
parts. The singular parts of observables and states read

OS =
∫

O(ω) |ω)dω = O(H ) ρS =
∫
ρ(ω)(ω | dω (15)

ThereforeOS is a function of the Hamiltonian,

H =
∫
ω |ω)dω

Using the well-known properties of the Wigner integral, we have that

symbOS = OW
S (q, p) = O(HW(q, p))+ 0

(
h2

S2

)
(16)

whereS is the characteristic action of the system. Then, in the particular case
whereO(ω) = δ(ω − ω′) we have from Eq. (16)

symb|ω′〉〈ω′| = δ(HW(q, p)− ω′) (17)

where we have disregarded the 0(h2

S2 ) as we will always do below. Moreover, for
regular functions,

(ρ |O) = (symbρ | symbO) =
∫
ρW(q, p)OW(q, p)dqdp (18)

We will adopt the same equation for the singular parts. This will allow us to define
symbρS as satisfying

(symbρS | symbOS) = (ρS |OS) (19)

In doing so we are repeating what we have done at the quantum level when we
defined the functional (ρ|.
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From Eq. (17) we know that

symb|ω′) = δ(HW(q, p)− ω′) (20)

It is clear that we cannot normalize this function with the variables and in the
domain of integration of (18). In fact, using the canonical variable−t , the canonical
variable conjugated toH , for any function likesymb|ω′, p′) = δ(HW(φ)− ω′),
which is a constant fort , the integral will turn out to be infinity. So these functions
f (H ) are not classical densities since they do not belong toL1, if defined integrating
over the whole phase space, and they must be normalized in a different way. This
fact is not surprising since they are singular functions. But let us observe that, in
general,

OS(φ) = symb
∫ ∞

0
O(ω) |ω) dω =

∫ ∞
0

O(ω) δ(HW(φ)− ω′) dω (21)

which is a function independent of−t , and can be normalized (if necessary)
imposing the following conditions:

i. We integrate only over the momentum spaceH (i.e. not over−t), precisely,

||OS(φ)|| =
∫

dH
∫ ∞

0
|O(ω, p) | δ(H − ω′) dω =

∫
|O(H ) | d H

(22)
ii. We chose the regular functionO(ω) in the spaceL1 of the momentum,

that is to say, ∫
|O(ω) | dω < ∞ (23)

So, we will normalize all thef (H ) (if necessary) in this way, and we will perform
all the integrations in theLS spaceby this method. In particular we will use this
way of integration whendefining functionals ofL′S.

Then, to satisfy Eq. (9), necessarily,

ρW
Sω(q, p) = symb(ω′ | = δ(HW(q, p)− ω′) (24)

a result already obtained in Castagnino and Laura (2000b) (Eqs. (34) and (35))
with different methods. So,ρW

Sω(q, p) corresponds to a density function extremely
peaked over the classical trajectory defined by the conservation lawHW(q, p) =
ω′.

From Eq. (15),

ρW
S (q, p) =

∫ ∞
0
ρ(ω)ρW

Sω(q, p) dω =
∫ ∞

0
ρ(ω) δ(HW(q, p)− ω′) dω

= ρ(HW(q, p)) (25)
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and it is aconstant of the motion, as it was expected. Moreover,ρW
S (q, p) ≥ 0

sinceρS(ω) ≥ 0. This means thatρW
S (q, p) is the statistical ensemble of the density

functionsρW
Sω(q, p) extremely peaked over the classical trajectories defined by the

conservation lawHW(q, p) = ω′ and weighted by the probabilitiesρ(ω). From
Eq. (14) we know that only the singular part must be considered after decoherence.
Thus, fort →∞ the classical densityρW

S (q, p) is resolved as a set of classical
trajectories.

At this point, we have defined the Wigner transformation both for the regular
parts and for the singular parts of observables and states. As a result, the singular
parts share the same usual properties with the regular parts, since we have postu-
lated such properties to define the Wigner transformation of the singular parts. In
fact, these usual properties follow from Eq. (16) (see Castagnino and Laura, 2000b,
for details). For example, Eq. (12) is also valid when the Wigner transformations
are involved,

lim
t→∞(ρW |OW) =

∫
ρW
∗ (H )OW

S (H )d H (26)

This means that any observable|O) becomesOW
S (q, p) in the limit t →∞, and

behaves in a classical way.
After this presentation of the formalism in the simplest case, let us study

the general case. In general, we must consider a CSCO,{H, O1, . . . , On}, whose
eigenvectors are|ω, o1, . . . , on〉. In this case, (ρ∗|will be diagonal in the variables
ω, ω′ but not in general in the remaining variables. Therefore, a further diagonaliza-
tion of (ρ∗| is necessary: as a result, a new set of eigenvectors{|ω, p1, . . . , pn〉},
corresponding to a new CSCO{H, P1, . . . , Pn} emerges. This set defines the
eigenbasis{|ω, p1, . . . , pn), ω, p1, . . . , pn;ω′, p′1, . . . , p′n} of the van Hove
space of observablesVVH

O , where

|ω, p1, . . . , pn) = |ω, p1, . . . , pn〉〈ω, p1, . . . , pn|
|ω, p1, . . . , pn;ω′, p′1, . . . , p′n) = |ω, p1, . . . , pn〉〈ω′, p′1, . . . , p′n| (27)

(ρ∗| will be completely diagonal in the cobasis of states{(ω, p1, . . . , pn|,
(ω, p1, . . . , pn;ω′, p′1, . . . , p′n|} corresponding to the new eigenbasis ofVVH

O (see
Castagnino and Laura, 2000b, for details). And, most important, for this system
Eq. (25) reads

ρW
S (q, p) =

∑
p

∫ ∞
0
ρ(ω)ρW

Sωp1,... pn
(q, p) dω

=
∑

p

∫ ∞
0
ρ(ω) δ(HW(q, p)− ω′) δ(PW

i (q, p)− pi
)

dω (28)

where the densityρW
Sωp1,... , pn

corresponds to a density function extremely peaked
over the classical trajectory defined by the conservation laws:



P1: FLT

International Journal of Theoretical Physics [ijtp] pp924-ijtp-469731 September 26, 2003 15:49 Style file version May 30th, 2002

1290 Castagnino and Lombardi

HW(q, p) = ω′, PW
1 (q, p) = p1, . . . PW

n (q, p) = pn (29)

Therefore, fort →∞ the classical densityρW
S (q, p) is resolved again as a set of

classical trajectories.
As this presentation shows, decoherence does not require the interaction of

the system of interest with the environment:a single-closed quantum system can
decohere. The diagonalization of the density operator does not depend on the open-
ness of the system but on the continuous spectrum of the system’s Hamiltonian.
This means that the problem of providing a general criterion for discriminating
between system and environment vanishes in the self-induced approach. This fact
leads to an additional advantage of the new way of conceiving decoherence. As
we have seen, in many cases the einselection approach requires to introduce as-
sumptions about the observables which will behave classically to decide where to
place the boundary between system and environment. The new approach, on the
contrary, provides a mathematically precise definition of the observables regarding
to which the system will decohere. In fact, there are two kinds of such observables:

a) Observables that commute with the Hamiltonian, that are represented by
the singular kernelsO(ω) δ(ω − ω′)

b) Observables that do not commute with the Hamiltonian, which are rep-
resented by the kernelsO(ω) δ(ω − ω′)+ O(ω, ω′), whereO(ω, ω′) is
a regular function. In other words, these observables have a regular part
O(ω, ω′) and a singular partO(ω) δ(ω − ω′) in the eigenbasis defined by
the system’s Hamiltonian.

This definition is completely general and does not require to introduce any prior
assumption about the classical behavior of certain observables.

When the phenomenon of decoherence is viewed from this new perspective,
it does not need to be conceived as “a justification for the persistent impression
of reality” (Paz and Zurek, 2000). Classicality is not a perceptual result of the
correlations between the observed system and the observer’s brain though the
environment: the emergence of classicality is a consequence of the own dynamics
of a closed quantum system. In other words, from the self-induced approach,
decoherence is a relevant element for explaining theemergenceof classicality, not
ourperceptionof classicality.

4. DECOHERENCE IN A CLOSED UNIVERSE

If the transition from quantum to classical does not require the split of the
universe into subsystems as a necessary condition, then decoherence can take part
in the account of how the universe as a whole behaves classically. In this section
we will apply the self-induced approach to a simple quantum-cosmological model
to show how classicality arises in this case.
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4.1. The Model

Let us consider the flat Roberson–Walker universe (Castagnino, 1998;
Castagninoet al., 1995; Castagnino and Lombardo, 1996; Paz and Sinha, 1991)
with a metric,

ds2 = a2(η)(dη2− dx2− dy2− dz2) (30)

whereη is the conformal time anda the scale of the universe. Let us consider a free
neutral scalar field8 and let us couple this field with the metric, with a conformal
coupling (ξ = 1

6). The total action readsS= Sg + Sf + Si , and the gravitational
action is

Sg = M2
∫

dη

[
−1

2
ȧ2− V(a)

]
(31)

whereM is the Planck mass,ȧ = da/dη, and the potentialV contains the cosmo-
logical constant term and, eventually, the contribution of some form of classical
matter. We suppose thatV has a bounded support 0≤ a ≤ a1. We expand the field
Φ as

Φ(η, x) =
∫ +∞
−∞

fk(η)e−i k·xdk (32)

where the components ofk ∈ R3 are three continuous variables.
The Wheeler–De Witt equation for this model reads

H9(a, Φ) = (hg + h f + hi )9(a, Φ) = 0 (33)

where

hg = 1

2M2
∂2

a + M2V(a)

h f = −1

2

∫ (
∂2

k − k2 f 2
k

)
dk

hi = 1

2
m2a2

∫
f 2
k dk (34)

with m the mass of the scalar field,k/a the linear momentum of the field, and
∂k = ∂/∂ fk .

We can now go to the semiclassical regime, using the WKB method (Hartle,
1995), writing9(a, Φ) as

9(a, Φ) = exp[i M 2S(a)]χ (a, Φ) (35)

and expandingSandχ as

S= S0+ M−1S1+ · · · , χ = χ0+ M−1χ1+ · · · (36)
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To satisfy Eq. (33) at the orderM2, the principal Jacobi function,S(a), must satisfy
the Hamilton–Jacobi equation:(

dS

da

)2

= 2V(a) (37)

We can now define the (semi)classical time as a parameterη = η(a) such that

d

dη
= dS

da

d

da
= ±

√
2V(a)

d

da
(38)

The solution of this equation isa = ±F(η, C), whereC is an arbitrary integration
constant. Different values of this constant and of the± sign give different classical
solutions for the geometry.

Then, in the next order of the WKB expansion,χ satisfies a Schr¨odinger
equation that reads

i
dχ

dη
= h(η)χ (39)

where

h(η) = h f + hi (a) (40)

precisely

h(η) = −1

2

∫ [
− ∂2

∂ f 2
k

+Ä2
k(a) f 2

k

]
dk (41)

where

Ä2
k(a) = Ä2

$ (a) = m2a2+ k2 = m2a2+$ (42)

where$ = k2 and |k = |k|. So the time dependence of the Hamiltonian comes
from the functiona = a(η).

Let us now consider a scale of the universe such thataoutÀ a1. In this region
the geometry is almost constant. Therefore, we have an adiabatic final vacuum
|0〉 and adiabatic creation and annihilation operatorsa†k andak . Thenh = h(aout)
reads

h =
∫
Ä$a†kakdk (43)

We can now consider the Fock space and a basis of vectors,

|k1, k2, . . . , kn〉 ∼= |{k}〉 = a†k1
a†k2

. . .a†kn
. . . |O〉 (44)

where we have called{k} the setk1, k2, . . . , kn, where eventuallyn goes to infinity.
The vectors of this basis are eigenvectors ofh:

h|{k}〉 = ω|{k}〉 (45)
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where

ω =
∑
k∈{k}

Ä$ =
∑
k∈{k}

(
m2a2

out+$
) 1

2 (46)

We can now use this energy to label the eigenvector as

|{k}〉 = |ω, [k]〉 (47)

where [k] is the remaining set of labels necessary to define the vector unambigu-
ously.{|ω, [k]〉} is obviously an orthonormal basis, so Eq. (43) reads

h =
∫
ω|ω, [k]〉〈ω, [k] | dω d[k] (48)

4.2. Decoherence in Energy

In this case, a generic observable|O) ∈ VVH
O reads (see Eq. (7))

|O) =
∫

O(ω, [k], [k′])|ω, [k]; [k′]) dω d[k] d[k′]

+
∫ ∫

O(ω, [k], ω′, [k′])|ω, [k]; ω′, [k′]) dω d[k] dω′d[k′] (49)

where

|ω, [k]; [k ′]) = |ω, [k]〉〈ω, [k′]|) |ω, [k]; ω′, [k′]) = |ω, [k]〉〈ω′, [k′]|
and a generic state (ρ| ∈ VVH

S can be expressed as (see Eq. (8)):

|ρ) =
∫
ρ(ω, [k], [k′])(ω, [k]; [k′] | dω d[k] d[k′]

+
∫ ∫

ρ(ω, [k], ω′, [k′]) (ω, [k]; ω′, [k′] | dω d[k] dω′ d[k′] (50)

where{(ω, [k]; [k′]|, (ω, [k]; ω′, [k′]|}, the basis ofVVH
S , is the cobasis of{|ω, [k];

[k′]), |ω, [k]; ω′, [k′])}. Then, the mean value of the observable|O) in the state
(ρ(t)| reads

〈O〉ρ(t) = (ρ(t)|O) =
∫
ρ(ω, [k]; [k′])O(ω, [k]; [k′]) dω d[k] d[k′] (51)

+
∫ ∫

ρ(ω, [k], ω′, [k′])e−i (ω−ω′)t

×O(ω, [k], ω′, [k′]) dω d[k] dω′ d[k′] (52)
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Taking the limit for t →∞ and applying the Riemann–Lebesgue theorem, we
obtain

lim
t→∞〈O〉ρ(t) = lim

t→∞(ρ(t)|O) =
∫
ρ(ω, [k]; [k′])O(ω, [k]; [k′]) dω d[k] d[k′]

(53)
And this integral is equivalent to the mean value of the observable|O) in a new
state (ρ∗|,

(ρ∗| =
∫
ρ(ω, [k]; [k′]) (ω, [k]; [k′] | dω d[k] d[k′] (54)

This new state (ρ∗| is the equilibrium time-asymptotic state, which is diagonal to
the variablesω, ω′ as decoherence in energy requires.

4.3. Decoherence in the Remaining Dynamical Variables

In this case, (ρ∗| is diagonal in the variablesω, ω′ but not in the remaining
variables. This means that a further diagonilization is necessary.

Let us observe that, if we use polar coordinates fork, Eq. (32) reads

Φ(x, n) =
∫ ∑

lm

φklmdk (55)

where

φklm = fk,l (η, r )Yl
m(θ , ϕ) (56)

wherek is a continuous variable,l = 0, 1,. . .; m= −l , . . . , l ; andYl
m are spherical

harmonic functions. So the indicesk, l , m contained in the symbolk are partially
discrete and partially continuous.

As (ρ†∗ | = (ρ∗|, thenρ∗(ω, [k], [k′]) = ρ(ω, [k], [k′]) and, therefore, there
exists a set of vectors{|ω, [l]〉} such that∫

ρ(ω, [k], [k′])|ω, [l]〉[k′]d[k′] = ρ(ω, [l])|ω, [l]〉[k] (57)

namely,{|ω, [l]〉} is the eigenbasis of the operatorρ(ω, [k], [k′]). Thenρ(ω, [l])
can be considered as an ordinary diagonal matrix in the discrete indicesl andm, and
a generalized diagonal matrix in the continuous indexk.6 Under the diagonalization

6 For example, we can deal with this generalized matrix by rigging the spaceVVH
S and using the

Gel’fand-Maurin theorem (Parraviciniet al., 1980); this procedure allows us to define a generalized
state eigenbasis for systems with continuous spectrum. It has been used to diagonalize Hamiltonians
with continuous spectra the literature (Bohm, 1986; Castagninoet al., 1996; Castagnino and Laura,
1997), etc.



P1: FLT

International Journal of Theoretical Physics [ijtp] pp924-ijtp-469731 September 26, 2003 15:49 Style file version May 30th, 2002

The Self-Induced Approach to Decoherence in Cosmology 1295

process, Eq. (54) is written as

(ρ∗| =
∫

U †[l][k] ρ(ω, [l], [ l′])U [l′]
[k′]U

†[l′′]
[k′] (ω, [l′′], [ l′′′] |U [l′′′]

[k]

× dω d[k] d[k′] d[l] d[l′] d[l′′] d[l′′′] (58)

whereU †[l][k] is the unitary matrix used to perform the diagonalization and7

ρ(ω, [l], [ l′]) = ρ(ω, [l])δ([l] − [l′]) (59)

Since

ρ(ω, [l], [ l]) = ρ(ω, [l]) =
∫

U [k]
[l] ρ(ω, [k], [k′])U †[k

′]
[l] d[k] d[k′] (60)

we can define

(ω, [l]| = (ω, [l], [ l]| =
∫

U [k]
[l] (ω, [k], [k′]|U †[k′]†[l] d[k] d[k′] (61)

We can repeat the procedure with vectors (ω, ω′, [k], [k′]| and obtain vectors
(ω, ω′, [l]|. In this way we obtain a diagonalized cobasis{(ω, [l]|, (ω, ω′, [l]|}. So
we can now write the equilibrium state as

(ρ∗| =
∫
ρ(ω, [l])(ω, [l] | dω d[l] (62)

Since vectors (ω, [l]| can be considered as diagonal in all the variables, we have
obtained decoherence in all the dynamical variables.

4.4. Emergence of Trajectories

Let us restore the notation{l } = (ω, [l]), {k} = (ω, [k]) as in Eq. (44), and
let us consider the configuration kets|{x}〉 = |η, [x]〉. Since we are considering
the period whena ∼ aout, the system with Hamiltonian (43) is just a set of infinite
oscillators with constantsÄk(aout) that represents a scalar field with massmaout.
Then, we are just dealing with a classical set ofN particles, with coordinates [x]
and momenta [k]. Therefore, we can introduce the Wigner function corresponding
to the generalized state|{l }),

ρW
{l }([x], [k]) = π−4N

∫
({l } | x+ λ〉〈x− λ|) e2i [λ]·[k] d4nλ (63)

Using the same reasoning that we have used to obtain Eq. (28) (see also Castagnino
and Laura, 2000b)ρW

{l }([x], [k]) reads

ρW
{l }([x], [k]) =

∏
i

δ
(
LW

i ([x], [k]
)− l i ) (64)

7δ([l] − [l]′) is a Dirac delta for the continuous indices and a Kronecker delta for the discrete ones.
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whereLW
i ([x], [k]) is the classical observable obtained fromLi (that corresponds

to indicesl) via the Wigner integral (consideringh = L0 and including 0 among
the indicesi). Now, with the new notation Eq. (62) reads

(ρ∗| =
∫
ρ{l }({l } |d{l } (65)

Then, if we call

ρW
∗ ([x], [k]) = π−4N

∫
(ρ∗|x+ λ〉〈x− λ|) e2i [λ]·[k] d4nλ (66)

we obtain

ρW
∗ ([x], [k]) = ρW

∗
(
LW

0 ([x], [k]), LW
1 ([x], [k]), . . .

)
(67)

So finally,

ρW
∗ ([x], [k]) ∼

∫
ρ{l }ρW

∗ ([x], [k]) δ({LW} − {l } d{l }

=
∫
ρ{l }|

∏
i

δ
(
LW

i − l i
)

d{l } (68)

The last equation can be interpreted as follows:

i. δ({LW} − {l }) is a classical density function, strongly peaked at certain
values of the constants of motion{l }, corresponding to a set of trajectories,
where the momenta are equal to the eigenvaluesl i (i = 0, 1, 2,. . .).

ii. ρ{l } is the probability to be in one of these sets of trajectories labelled by
{l }. Precisely, if some initial density matrix is given, from Eq. (65) it is
evident that its diagonal termsp{l } are the probabilities to find the density
functionδ({LW} − {l }) in the corresponding classical equilibrium density
functionρW

∗ ([x], [k]) namely, the probabilities of the trajectories labelled
by {l } = (ω, [l]).

iii. Let a be the coordinate classically conjugated tol and leta0 be the coor-
dinatea at timeη = 0,8 then we obtain the classical trajectories:

ai = l i η + a0i (69)

iv. Let us now callρ{l } = p{l }[a0]. Actually, p{l }[a0] is not a function ofa0;
it is simply a constant ina0, sincea0 is only an arbitrary point and our
model is spatially homogenous. Then we can write

p{l }[a0] =
∫

p{l }[a0]

n∏
i=1

δ(ai − a0i ) d[a0] (70)

8 We could also add a nonrelevant equation, something liket = ωη + t0, which would define a choice
of our clock’s time.
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In this way we have changed the role ofa0: it was a fixed (but arbitrary) point, and
now it is a variable that moves all over the space. Then Eq. (68) reads

ρW
∗ ([x], [k]) ∼

∫
p{l }[a0]

n∏
i

δ(LW
i − l i )

n∏
j=1

δ(a j − a0 j )d[a0] d{l } (71)

So, if we call

ρW
{l }[a0] ([x], [k]) =

n∏
i=0

δ(LW
i − l i )

n∏
j=1

δ(a j − a0 j ) (72)

we have

ρW
∗ ([x], [k]) ∼

∫
p{l }[a0]ρ

W
{l }[a0] ([x], [k]) d[a0] d{l } (73)

From Eq. (72) we see thatρW
{l }[a0] ([x], [k]) 6= 0 only in a narrow strip around the

classical trajectory (69) defined by the momenta{l } and passing through the point
[a0] (actually the density function is as peaked as it is allowed by the uncertainty
principle; its width is essentially a 0(h

S), since theδ functions of all the equa-
tions become Dirac’s deltas only whenh→ 0). Therefore, Eq. (73) describes the
classical behavior of our model of universe.9

Let us sum up the main steps of our argument. Whenη→∞, the quan-
tum densityρ becomes a diagonal density matrixρ∗. The corresponding classical
distributionρW

∗ ([x], [k]) can be expanded as a sum of classical trajectories den-
sity functionsρW

{l }[a0] ([x], [k]), each one weighted by its corresponding probability
p{l }[a0] . Going back to Eq. (73),ρW

{l }[a0] ([x], [k]) = ρW
{l1,l2,...ln}[a0] ([x], [k]) is the den-

sity corresponding to the set ofn points (let us say, galaxies), each one of them
moving over a trajectory defined by Eq. (69), where eventuallyn goes to infin-
ity. So, as the limit of our quantum model we have obtained a classical statistical
mechanical model, and the classical realm appears.

In summary, we have proved that the density operator is translated into a
classical density, via a Wigner function, and it is decomposed as a sum of densi-
ties peaked around all possible classical trajectories, each one of these densities

9 In this section, as in Section 2.2, we have faced the following problem:ρW∗ ([x], [k]) is a a constant
that we want to decompose in functionsρW

{l }[a0] ([x], [k]) which are different from zero only around the
trajectory (69) and therefore are variables ina. Then, essentially we use the fact that iff (x, y) = g(y)
is a constant function inx, we can decompose it as

g(y) =
∫

g(y) δ(x − x0) dx0

namely, the densitiesδ(x − x0) are peaked in the trajectoriesx = x0 = const., y = var. and, therefore,
are functions ofx. This trajectories play the role of those of Eq. (70).

As all the physics, including the correlations, is already contained in Eq. (68), the reader may
just consider the final part of this section, from Eq. (70) to Eq. (73) a didactical presentation.
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weighted by their own probability. Therefore, our quantum density operator be-
haves in its classical limit as a statistical distribution among a set of classical tra-
jectories. Similar results are obtained in papers by Halliwell and Zouppas (1995)
and Polarsky and Starobinsky (1996).

5. OPERATORS AND FIELDS

Up to this point, all our reasoning was made in the context of the Schr¨odinger
picture, as it is usual in quantum mechanics. But in quantum field theory, on the
contrary, the Heisenberg picture is the usual scenario. However, it is quite easy to
reformulate the argument in the new picture, since our main equations are (14) and
(26) for the general case, and (53) and its corresponding classical version for the
cosmological case. In both cases only the singular partsOS andρS = ρ∗ appear, and
both functions are time independent. Then, whereas in the Schr¨odinger picture we
have thatO = O(t0) is time constant andρ(t)→ ρ∗ = ρS is time constant in the
limit, in the Heisenberg pictureρ = ρ(t0) is time constant andO(t)→ O∗ = OS

is time-constant in the limit; nevertheless, both results coincide since whent =
∞, ρ∗ = ρS, and O∗ = OS. Then, if we consider the Heisenberg picture, when
t →∞ the operatorsfk(η) of Eq. (32) become singular and also equal to the
constantfk ; therefore, the correspondingf W

k are constant and classical. The same
can be said for the fieldΦ(η, x) of Eq. (32), that becomes a time constantΦ(x).

With this procedure, in certain sense we have lost the dynamics of the field.
However, it can be recovered if we compute a “master equation” from any asymp-
totic expansion of the Riemann–Lebesgue theorem or if we make an analytic
continuation in the Liouville complex energy plane as in paper by Arb´o et al.
(2000). Such a master equation coincides with the usual one and also with the
Lindblad approach.

6. CONCLUSION

In this paper our aim was to rigorously present the self-induced approach
to decoherence, according to which the phenomenon of decoherence is the result
of the own dynamics of a closed system governed by a Hamiltonian with contin-
uous spectrum. From this approach, the interaction between the system and the
environment is not needed and, therefore, a single-closed quantum system can
decohere. This feature makes this approach particularly appropriate for address-
ing problems in quantum cosmology, since the universe is, by definition, a closed
quantum system with no environment to interact with. In this context, we have
applied the self-induced approach to a quantum cosmological model, showing that
decoherence in energy and in the remaining dynamical variables obtains with no
reference to an environment and without assuming in advance which observables
will behave classically.
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